LDRA

Software Technology

Achieving the ISO/SAE 21434 software
objectives

Cost effective software certification
for automotive cybersecurity

www.ldra.com

© LDRA Ltd. This document is property of LDRA Ltd. Its contents cannot be reproduced, disclosed or utilised without company approval.

LDRA Ltd 1 Achieving the ISO/SAE 21434 software objectives

http://www.ldra.com

Contents L’)M

3

3

3

4

4

ISO/SAE 21434, TARA, @NA = WHEE? oo 5
Seeking an ASIL @QUIVAIENT ... 5
ISO/SAE 21434 cybersecurity in tandem With 1SO 26262 ... 6
ISO/SAE 21434 compliant software developmMENt ..o 6
ISO/SAE 21434 §8 Continual cybersecurity activities & §13 Operations and maintenance................ccccoooveeeern..e 7
ISO/SAE 21434 §8.5 VUINErability @nalySiS.........ooooo oo 8
[SO/SAE 21432 §9 COMEEPE vt 8
Requirements traceability @aNd 1SO/SAE 2043 ..o 8
ISO/SAE 21434 §10.4.1 Product development: d@SIGN. ... 9
COAING STANAAIAS ... 9
ISO/SAE 21434 §10.4.2 Product development: integration and verification ... 11
REGUITEMENTS-DASEA TEST ..o 11

O AICE T ST e 12
RESOUICE USAZE EVALUATION oo 13
Verification of the control flow and data flOW. ... 15
DYNAMIC @NAIYSES -ttt 15
SEALIC @NALYSIS e 15

(000 Y 1ot LT 10 2 SOOI 16
LT 20 4oL (=Y OO 17

LDRA Ltd p Achieving the ISO/SAE 21434 software objectives

LDRA

Over the past decade there has been a proliferation of automotive electrical and/or electronic (E/E/PE)
systems such as adaptive driver assistance systems, anti-lock braking systems, steering and airbags. ISO
26262 “Road vehicles — Functional safety” [1] was first published in 2012 in response to this explosion

in automotive E/E/PE system complexity and the associated risks to public safety, bringing with it an
opportunity for automotive manufacturers to embrace best functional safety practices throughout the
development lifecycle.

Background

More recently, the increasing levels of integration and connectivity associated with such systems have
provided almost as many challenges as their proliferation, with non-critical systems such as entertainment
systems sharing the same communications infrastructure as steering, braking and control systems. The
potential for hazards and economic losses resulting from cyberattacks has consequently given increasing
cause for concern over recent years. ISO 26262 requires any threats to functional safety to be adequately
addressed, implicitly including those relating to security threats, but it gives no explicit guidance relating
to cybersecurity.

At the time of ISO 26262’s publication that was perhaps to be expected. Automotive embedded
applications have traditionally been isolated, static, fixed-function, device-specific implementations, and
practices and processes have relied on that status. But the rate of change in the industry has been such
that by the time of its publication in 2016, SAE International’s Surface Vehicle Recommended Practice SAE
J3061™ in January 2016 was much anticipated [2].

SAE J3061 was always intended to be a stopgap, allowing time for the development of a more formal
standard to address the issue more satisfactorily. SAE J3061 was superseded by ISO/SAE 21434:2021 (3]
on August 31, 2021.

ISO/SAE 21434 can be considered complementary to ISO 26262 in that it provides guidance on best
development practices from a cybersecurity perspective, just as ISO 26262 provides guidance on practices
to address functional safety.

Additionally, the new UNECE WP.29 [4] regulation R155 for CSMS (Cyber Security Management System) [5]
has been adopted by UNECE’s World Forum for Harmonization of Vehicle Regulations, making compliance
obligatory for vehicle type approval from June 2022. ISO/SAE 21434 is cited in R155 as an appropriate
reference for appropriate cybersecurity skills.

Superseding SAE J3061

ISO/SAE 21434 supersedes SAE International’s 2016 publication SAE J3061™ Cybersecurity Guidebook

for Cyber-Physical Vehicle Systems. The two documents differ a little in style in that SAE J3061 related the
security and safety processes to each other, and ISO/SAE 21434 decouples them. Despite that distinction,
ISO 26262 remains closely linked to the new standard, and is referenced repeatedly by it.

A missed opportunity?

ISO/SAE 21434 is seen by many as a missed opportunity. Simply comparing the number of pages with
those in ISO 26262 suggests why. ISO 26262 runs to 12 parts, many of which have a direct impact on how
compliant application software is developed. Part 6 alone, entitled “Product development at the software
level”, runs to 66 pages [6]. In contrast, the whole of ISO/SAE 21434 is 81 pages long, and its scope
stretches across all aspects of electrical and electronic (E/E) systems within road vehicles, throughout the
supply chain.

Developers can expect to find details of what needs to be achieved in ISO 26262 from the perspective of
functional safety, and ISO/SAE 21434 from the perspective of cybersecurity. But whereas 1SO 26262 also
presents details of exactly how to achieve its aims, ISO/SAE 21434 does not.

The failure of ISO/SAE 21434 to give detailed guidance on how to achieve its objectives means that from a

software perspective, the standard does little more than ratify the document it replaces. However, ISO/SAE
21434 (and SAE J3061 before it) presents a worthy set of goals for software developers to achieve. From an
optimistic perspective, the lack of detail affords flexibility on how they are achieved.

LDRA Ltd 3 Achieving the ISO/SAE 21434 software objectives

LDRA

Despite the clear synergy between the ISO/SAE 21434 and ISO 26262 it is important to note that ISO/SAE
21434 does more than simply formalize the need to include security considerations in functional safety
requirements. Much of this white paper focuses on an appropriate process once functional, safety and
security requirements are established but the significance of malicious intent in the definition of those
requirements should not be underestimated.

Beyond functional safety

Perhaps less obviously, the introduction of cybersecurity into an ISO 26262-like formal development
implies the use of similarly rigorous techniques into applications that are NOT safety critical — and perhaps
into organizations with no previous obligation to apply them. ISO/SAE 21434 discusses privacy in general
and Personally Identifiable Information (PIl) in particular, and highlights both as key targets for a bad actor
of no less significance than the potential compromise of safety systems. In practical terms, it therefore
demands that ISO 26262-like rigour is required in the defence of a whole manner of personal details
potentially accessed via a connect car, including personal contact details, credit card and other financial
information, and browse histories.

ISO 26262, HARA, and ASILs
The Hazard Analysis and Risk Assessment (HARA) required by ISO 26262:3 is used to identify malfunctions
that could lead to hazards, to rate the relevant risks of hazards, and to formulate safety goals.

The resulting derivation of ASILs (Automotive Safety Integrity Levels) is a key concept in the development
process defined by ISO 26262. ASILs are designed to allow the level of effort invested in ensuring the
prevention of hazardous events to be proportionate.

Each hazardous event is assigned a severity classification (So-S3), an exposure classification (Eo-E4),

and a controllability classification (Co-C3). The higher numerical values representing the least desirable
characteristic in each case. The likelihood of resulting harm is naturally a combination of these factors, and
that is reflected in the assigned ASIL.

ISO 26262 requires the level of effort to be proportionate to ASIL, and not just to severity. Even if a
hazardous event is (say) potentially life threatening, there is no need to invest heavily in its prevention if it
is incredibly unlikely to happen.

A | 8 | c | D |
1a Requirement-based test ++ ++ -+ ++
i1b Interface test ++ ++ ++ ++
1c Fault injection test + + ++ ++
ad Resource usage test ++ e ++ ++
1e Back-to-back test between code and model, if + + ++ ++
applicable
af Verification of the control flow and data flow + + ++ ++
1g Static code analysis + oS ++ ++
1h Static code analysis based on abstract ++ ++ ++ ++

interpretation
”++” The method is highly recommended for this ASIL.

€« 6

+“ The method is recommended for this ASIL.
“0“ The method has no recommendation for or against its usage for this ASIL.

Figure 1: “Methods for verification of software integration” specified by Table 10 in ISO 26262-6:2018

LDRA Ltd 4 Achieving the ISO/SAE 21434 software objectives

LDRA

The Threat Agent Risk Assessment (TARA) suggested by ISO/SAE 21434 is analogous to ISO 26262 HARA.
TARA is a threat-based methodology to help identify, assess, prioritize, and control cybersecurity risks. It
is a practical method to determine the most critical exposures while taking into consideration mitigation

controls and accepted levels of risk.

ISO/SAE 21434, TARA, and — what?

The calculation of a “risk value” is like the calculation of an ASIL in that it accounts for the severity and
likelihood of a successful attack, dependent on several factors:

o threat scenario identification
° impact

o attack path

o attack feasibility for that path

The “impact ratings” for safety damage are taken from the definitions in ISO 26262. They use the same
impact metric as that used to ascertain ISO 26262 ASIL ratings. That principle is extended in ISO/SAE
21434 to address threats with the potential to cause financial damage, operational damage, and privacy
damage (Figure 2).

Impact rating Severe Major Moderate Negligible
Damage category

Safety S3: Life S2: Severe and

criteria used by threatening life-threatening S1: Light and So: No iniuries

ISO/SAE 21434 are taken from injuries, fatal injuries (survival moderate injuries ’)

ISO 26262-3:2018 injuries probable)
Catastrophic Inconvenient Inconvenient No effect,

Financial impact consequences consequences consequences, negligable

P which might not be which can be overcome with consequences

overcome overcome limited resources oris irrelevent
Loss or impairment Loss or impairment Partial No perceivable

Operational of a core vehicle of an important degredation ofa impairment of a
function vehicle function vehicle function vehicle function
Significant or even Inconvenient Negligible

. . S Serious impact to
Privacy irreversible impact consequencesto consequences
the road user

to the road user the road user to the road user

Figure 2: Abbreviated impact rating descriptions taken from ISO/SAE 21434 tables F.1 to F.4 inclusive

Not only does ISO/SAE 21434 bring formal development to less safety-critical domains, but it also
extends the scope of that development far beyond the traditional project development lifecycle. The
need to establish an incident response process to address vulnerabilities that become apparent when
the product is in the field, consideration for over-the-air (OTA) updates, and cybersecurity considerations
when a vehicle changes ownership are all examples of that.

Seeking an ASIL equivalent

ISO/SAE 21434 is much less prescriptive of the TARA approach to be taken, as compared with ISO 26262
HARA. But perhaps more significantly, it stops short of defining an ASIL equivalent. Unlike I1SO 26262,
ISO/SAE 21434 does not map the level of validation and verification effort to the criticality of the software
under development.

However, these ratings do lend themselves to mapping to the ASIL categories presented in ISO 26262.

LDRA Ltd) Achieving the ISO/SAE 21434 software objectives

LDRA

Figure 3 shows a reproduction of the example table superimposed with risk values, the numeric values of
which will be dependent on the calculation approach selected. If this represents best practice where safety is
critical, it seems logical that the same approach would be equally appropriate when the application is critical
in other ways.

ASIL

A | 8 | ¢ | o |
ISO/SAE 21434 risk value
| Low [Moderate | High | Veryhigh
++ ++ ++ ++

1a Requirement-based test

1b Interface test ++ ++ ++ +

ic Fault injection test + + ++ ++

ad Resource usage test ++ ++ ++ ++
Back-to-back test between code and model, if

1e . + + ++ ++
applicable

af Verification of the control flow and data flow + + ++ ++

1g Static code analysis + ++ ++ ++

Static code analysis based on abstract
1h . . ++ ++ ++ ++
interpretation

”++” The method is highly recommended for this ASIL.
“+“ The method is recommended for this ASIL.
“0“ The method has no recommendation for or against its usage for this ASIL.

Figure 3: Superimposing ISO/SAE 21434 criticality groupings on to the “Methods for verification of software
integration” specified by Table 10 in 1SO 26262-6:2018

ISO/SAE 21434 cybersecurity in tandem with 1SO 26262

SAE J3061 explicitly tied its development process to that of ISO 26262. Although ISO/SAE 21434 is less
tightly bound it does repeatedly reference ISO 26262 and there will be many cases where both standards
apply. Indeed, the standards lend themselves to the integration of the two at each stage of the product
lifecycle — even to the extent that the same test team could be deployed to fulfil both roles.

For example, it is possible to develop a technique to perform a hazard analysis, safety risk assessment, threat
analysis, and security risk assessment concurrently using a single integrated template and method.

Even where there is no safety consideration, adopting and adapting proven ISO 26262 best practice to
address the high-level demands of ISO/SAE 21434 is a pragmatic approach. It provides the opportunity to
apply tools and techniques that are known to development teams, and in many cases already available to
them.

Software tools vendors such as LDRA have long experience in easing the path to certification both in the
automotive sector and elsewhere and that expertise can be leveraged in the development of ISO/SAE 21434
compliant applications, whether ISO 26262 is also applicable or not.

ISO/SAE 21434 compliant software development

Figure 4 shows a modified V-model illustrating the relationships between ISO/SAE 21434 sections that have
the most impact on software development. Each element is expanded in the following sections.

LDRA Ltd 6 Achieving the ISO/SAE 21434 software objectives

LDRA

Cybersecurit .
):,andaﬁgn' i Black box dynamic

[RQ-11-01], analysis (DAST)
[RQ-11-02] Fuzz testing
Structural coverage
analysis

Performance analysis

White box dynamic

analysis (DAST)

oo Cybersecurit System testing

[RQ-09-08] ybersecurity

[RQ-09-09), validation Structural coverage

[RQ-09-10] [Raglnglol analysis
[RQ-10-11],

Requirements [RQ1012] TBvision®

traceability TBrun®
TBmanager® TBextreme®
IBM® Engineering
Requirements
Management
DOORS® ; White box dynamic
Polarion ALM, PITEELG SCERd analysis (DAST)
ReqlF, i verification Automated unit testing

MS Word & Excel (components) (components) Structural coverage
[RQ-10-01], [RQ-10-10], analysis
[RQ-10-02], [RQ-10-11], Y 5
Model-based [RQ-10-03] [RQ-10-12] TBrun
development TBextreme®
IBM® Engineering
Systems Design
Rhapsody®
MathWorks Simulink
Ansys SCADE
Product Integration
development — and verification

design ke
(sub-components) (SUb[;ng?gfms)

[RQ-10-05], [RQ-10-11],
[RQ-10-10] [RQ-10-12]

Static analysis (SAST)

Quality metrics
Coding standards Operations and maintenance
compliance [RQ-13-01], [RQ-13-02]
TBvision®

Continual cybersecurity activities

[RQ-08-01], [RQ-08-02], [RQ-08-03]

Static analysis (SAST) & White box dynamic analysis (DAST)
Impact analysis,
Regression testing,
Coding standards compliance
TBmanager® TBvision® TBrun®

Figure 4: Representation of the ISO/SAE 21434 life cycle as a modified V-model

Despite the lack of detailed guidance for software developers in ISO/SAE 21434, the advice that is given is
sound. The following sections explain in more detail how the principles outlined by the standard might be
applied.

ISO/SAE 21434 §8 Continual cybersecurity activities & §13 Operations and maintenance

Developers familiar with functional safety development are used to defending the world against their
system. Once that system is developed in a functionally safe manner, the world remains protected for as
long as the system is in service.

Secure software development involves defending a system against an aggressive world that is forever

evolving new and more sophisticated methods of attack, as addressed by ISO/SAE 21434 §8.8
“Cybersecurity monitoring”, with [RQ-08-03] explicitly requiring that ”Cybersecurity information shall be
collected and triaged to determine if the cybersecurity information becomes one or more cybersecurity
events”

Unlike the world of functional safety, the development lifecycle for a secure system continues after a

product is released. This is reflected in ISO/SAE 21434 §13.3 “Cybersecurity incident response”, and by
the [RQ-13-01] and [RQ-13-02] requirements for a “Cybersecurity incident response plan” to be defined and
implemented.

LDRA Ltd Achieving the ISO/SAE 21434 software objectives

LDRA

The ability to enforce coding standards on software modifications, re-run unit tests (regression testing),
and to apply impact analysis when security is breached are all invaluable tools in ensuring an effective
and efficient response to changes during development, or breaches after deployment. The LDRA tool suite
[7] provides all these capabilities in a single, integrated environment which lends itself equally to the
development process and to product support after launch.

ISO/SAE 21434 §8.5 Vulnerability analysis

STRIDE and DREAD are
part of a risk assessment
system originally developed
by Microsoft, but since used
more widely.

They provide mnemonics
for security threats:

Spoofing identity;
Tampering with Data;
Repudiation;
Information Disclosure;
Denial of Service;

Vulnerability analysis is a key differentiator between the
development lifecycles of cybersecurity critical systems, and those
concerned only with functional safety. The standard uses only
generalises the principles involved and so it is useful to consider
how they might apply to a connected, embedded software system.

One approach involves the concept of “Trust Boundaries” which
can be thought of lines drawn through a program. On one side of
the line, data is untrusted. On the other side of the line, data is
assumed to be trustworthy.

The first step in a Software Vulnerability Analysis (SVA) is to
decompose the application, and to analyse the data and control
entry and exit points. Appropriate controls are defined wherever

data crosses the trust boundaries and documented in a “threat
model” in the form of specialized data flow diagrams which show
different paths through the overall system, highlighting privilege

Elevation of Privilege

And for risk ratings:

Damage; boundaries.
Reproducibility;
Exploitability; This analysis and its associated documentation help the design

team determine where to place particular emphasis during
cybersecurity validation — perhaps in the form of one the CERT top
10 secure coding practices [5], such as the sanitization of data send
to peripherals. Later, during the implementation phase, the application of secure coding standards is an
example of best practice is achieving that sanitization.

Affected users;
Discoverability

The second software vulnerability analysis step involves using threat categorization such as STRIDE [6],
and/or DREAD [7] to identify threats based on the break-down of the system.

The Common Vulnerability Scoring System (CVSS) [8] and Common Weakness Scoring System (CWSS) [9]
are associated with CVE [10] and CWE [11] respectively and can each help to categorize vulnerabilities and
weaknesses in software whether at module, application, or source code level.

These threat identifications and categorisations dovetail naturally into the TARA principles discussed in
the standard, helping to ensure that proportionate security measures are applied.

ISO/SAE 21434 §9 Concept

The concept phase involves consideration of vehicle level functionality. Functions are implemented in
“items” for which cybersecurity goals are defined. Cybersecurity goals are high level requirements which
must be reflected in subsequent design and implementation phases. Demonstrating that traceability

by traditional means can prove to be a project management headache especially when tests fail, or
requirements change.

Requirements traceability and ISO/SAE 21434

Cybersecurity requirements traceability is a key objective of ISO/SAE 21434, just like functional safety
requirements traceability in ISO 26262. ISO/SAE 21434 requirements [RQ 09 08], [RQ 09 09], and [RQ
09 10] discuss the derivation of cybersecurity requirements from cybersecurity specifications, and that
principle of traceability is established throughout the development lifecycle.

LDRA Ltd]

Achieving the ISO/SAE 21434 software objectives

LDRA

Other examples of that recurring them include [RQ-10-02] and [RQ-10-03] where traceability between
requirements and design is addressed, and [RQ 10 08] and [RQ 10 09] which discuss traceability between
component implementation and specification.

Keeping track of both traceability to the project requirements and to the objectives of the standard itself
can present a project management nightmare, especially when changes occur. In many cases ISO 26262
will be applied concurrently, and standards such as AUTOSAR [16] and ASPICE [17] may also apply. The
TBmanager component of the LDRA tool suite can help by automating traceability not only to the collated
objectives from one or more standards, but also to project requirements [18] .

[Select Standards to Import

Standard
i) ARP4754A

) DO-1788
[{) DO-178B - Populated
i) DO-178C
i) DO-178C - Populated Details
i) DO-331
i) IEC 62304 Edition 1.0 - English
i) IEC 62304 Edition 1.0 - Frangais
i) 150 26262 ASIL A
i) 1SO 26262 ASIL B
[f) 150 26262 ASIL C
i) 150 26262 ASIL D
[1) ISO/SAE 21434 - Road vehicles - Cybersecy
[{) MISRA-C++:2008

€9 Section 9 - Concept phase
v &3 Section 10 - Product development phase
v @ 104.1- Design
v @ -Requirements
> & RQ-10-01 - Cybersecurity specifications shall be defined based on:
€3 RQ-10-02 - The defined cybersecurity requirements shall be allocated to components of
€3 RQ-10-03 - Procedures to ensure cybersecurity after the development of the componer]
> &3 RQ-10-04 - If design, modelling or prog; Ning ions or languages are used for tH
€ RQ-10-05 - Criteria (see [RQ-10-04]) for suitable design, modelling or programming lany
£} RQ-10-06 - Established and trusted design and implementation principles should be ap|
£ RQ-10-07 - The architectural design defined in [RQ-10-01] shall be analysed to identify
> &) RQ-10-08 - The defined cybersecurity specifications shall be verified to ensure complet
v @ - Workproducts
> &3 WP-10-01 - Cybersecurity specifications
> &3 WP-10-02 - Cybersecurity requirements for post-development
> &9 WP-10-03 - Doc ion of the modelling, design, or programming languages and
> &3 WP-10-04 - Verification report for the cybersecurity specifications
> &3 WP-10-05 - Weaknesses found during product development
v £} 1042 - Integration and verification
v @ -Requirements
£ RQ-10-09 - Integration and verification activities shall verify that the implementation ar
> €3 RQ-10-10 - The integration and verification activities of [RQ-10-09] shall be specified cq

Figure 5:Selecting standards for automated traceability using the TBmanager component of the
LDRA tool suite

Automated traceability ensures access to a requirements traceability matrix that is always pertinent
and up to date, providing instant and current product status information and a permanently up-to-date
Requirements Traceability Matrix (RTM).

ISO/SAE 21434 §10.4.1 Product development: design

Coding standards

ISO/SAE 21434 requirement [RQ-10-05] suggests that an appropriate language subset (often known as a
coding standard) is used.

Language subsets

There are many language subsets There are many different coding standards available (sidebar).
(or “coding standards”) each with ISO/SAE 21434 cites the MISRA [19] and SEI CERT [20] standards
differing attributes but nevertheless | as examples of appropriate language subsets. ISO 26262 also
with strong similarities, especially recommends the MISRA language subsets from a functional
when referencing the same safety perspective.

language. The most popular

) The TBvision component of the LDRA tool suite [21] can be used
standards include:

to verify adherence to the coding rules specified by the coding

C C++ standard, style guide, and/or language subset. The traditional
MISRA C MISRA C++ approach to enforcing adherence to such guidelines would be
CERTC CERT C++ to use peer code reviews. These may well still have a place in
CWE JSF++ AV

the development process — they can be very useful as an aid to
HIC++ learning between team members, for example — but automating

Java the more tedious checks is far more efficient and less prone to
CWE error (Figure 6).
CERT)

LDRA Ltd 9 Achieving the ISO/SAE 21434 software objectives

LDRA

B LDRA tool suite MISRA-C:2012 Compliance Overview Report

System Set: Ggset

Date of Analysis Report Produced on LDRA Version
Mon Jan 20 2020 11:3843 Mon Jan 20 2020 11:3936

87

Show Al - Sesrch

Guideline Compliance Level Violations Deviations Description

o1 Comptant Requined

D41 Comphant Required

o) Compiant

D43 Compiant

44 Compliant

L5 Compliant

D) Not Compliant Adnsory 38

D47 ompiant Required 0 i shal be tested

DAs q . "

D4.1 Compliant Required 0 - Run-time failures shall be minimised

D43 q

D410 D4.2 Compliant Advisory 0 - All usage of assembly language should be documented
D412 ¢ ’

o D43 Compliant Required 0 - Assembly language shall be encapsulated and isolated
R Compliant Required e Y L -

R12 Comphant Adnson

Figure 6: Reviewing coding rules and guidelines in the LDRA tool suite

ISO/SAE 21434 does not enforce the use of any particular coding standard, and it is entirely possible to
devise a project specific set of coding rules. It is also possible to choose one of the established standards
as a basis, and to manipulate, adjust and add to it to make it more appropriate for a particular application.
Clearly, if a tool is to be useful in such circumstances, then it too must be able to accommodate these
adjustments.

The TBexclude [22] module (Figure 7) offers a multi-tier coding violation exclusion capability enabling the
suppression of rule violation reports at the project, team, or individual user levels — perhaps in support of a
MISRA deviation process.

The phased prioritization and correction of violations simplifies the development workflow. A simple right
click in the TBvision interface excludes any violation, while groups of violations can be excluded according to
identifiers associated with analysis phases, or the coding standard of choice.

(& Add Exclusion ? X
Exclusion Scope: [framework.cop ‘
Exclusion File C:\LDRASB1\LDRA_Workarea\default_exclusions.ini ~ Load File
Exclusion Name: [Exciuded alt MISRA-C++:2008 5-0-14 i fromework.cpp severty: Required |
Tog: [setas Defauit | queued Y]
Violation Code Phase Type: | v‘
Violation Code Phase Number: [V|
Violation =
G Violation Excusions 7 x
Violation { exciusion File C:\LORA981\LORA_Workarea) default_excusions.ini
Bxternal § | add excusion Enable Fle | Disable File EdtFle Remove File | | Delete File Add Fie Create File
External
AN Vilton Exclusons (1)
Severity Exclusion Name [Souceline Funcion File Set__] Phase Code Phase Number Violation Component|
1 [Exclude: S 95 in frar rkcpp line 14 component: \(Unkn. A48 AM\framework\.cpp$ AUART_CmpS$ AS$ 958 A\(Unknown_Type:sc.
Macro | |2] Excluded all s Timing:getQuantumKeeper Atim_utils:tim_g AUART.CmpS As$ 295§
3 [Excluded all S 95 in frameworkcpp G Aopiy Date Scope > x
05 User 4 [] Excluded all S 95 in UART_Cmp
& Froen Date To Date
Date Scoy
) August, 2019 Q0 Auqust, 2019 5]
Sun Moa Tue Wed Thu #n Sat Sin Mon Tue Wea I Fn Sat
n x » F) . 1 2 3
Justficati A - —
2 4 5 5 7 L] 9 0 2 4 5 6 7 8 9 [—
BN o1z 1B oMo . £ NN I F IR A O OO 1
k2 B 19 20 2 2 23 4 M 8 20 2 2 2 A
33 25 26 27 2 2 W N ¥ 25 26 27 2 2 N)
% 1 3 4 s 6 7T 2 3 5 6
>= 2015-08-04 <= 2019-08-18
[Careel

Figure 7: The TBexclude module offers a multi-tier violation exclusion capability

LDRA Ltd Achieving the ISO/SAE 21434 software objectives

LDRA

ISO/SAE 21434 §10.4.2 Product development: integration and verification
ISO/SAE 21434 requirements [RQ-10-09] and [RQ-10-10] are concerned with the integration of the
components into subsystems and systems, and with the verification that the result fulfils the cybersecurity
specifications. It is perhaps in these sections where the lack of detailed guidance offered by the standard is

most telling.

[RQ-10-10] highlights the following methods for verification but provides no details of how they should
be approached. Each of them is supported by the LDRA tool suite, and each has associated methods that
have been proven in countless other contexts. They offer ready made solutions to address that void for any

organization looking to identify and apply best practise.

The ISO/SAE 21434 standard expands no further on the notion of each of the following verification
techniques, but those described below are proven in use during the development of countless critical

applications.

Requirements-based test

Requirements-based test involve dynamic testing (execution) of code in whole or in parts to demonstrate
that it fulfils the software requirements (and intermediate designs derived from those requirements) but
does not include unspecified functionality or redundant code. Structural coverage analysis [23] is required

to determine which code structures and component interfaces have not been exercised during execution of
these requirements-based test procedures. Unexecuted portions of code require further analysis resulting in
the addition or modification of test cases, changes to inadequate requirements, or the removal of dead code,

deactivated code, or unspecified functionality.

The standard does not require tools to be used to complete this exercise, but it is likely to be more efficient
to do so for all but the most trivial of applications. The LDRA tool suite can be used to perform structural
coverage analysis during unit test, integration test, on a complete application system test (Figure 8).

©

(
o (ThisLamp %

SirenSpacing) ==0

i i
_|(ThisLamp % ° ———

ExitSignSpacing) ==0
) st

: —
_|(ThisLamp % e

SirenSpacing) ==0 e

) = S

-

-

o
O

Uncovered
Branches

Uncovered
statements

ThisLampModel ;
Sint_32
ExitSignSpacing =
(SystemData::Instance () ->
GetExitSignSpacing ()) ;
B Sint_32
SirenSpacing =
(SystemData::Instance () ->
GetSirenSpacing ()) ;
if
(
(
(ThisLamp %
ExitSignSpacing) ==0

&&

(
\

(ThisLamp %
SirenSpacing) ==0
3

8)
L
ThisLampModel = Duo ;
}
else
if
\
(ThisLamp %
ExitSignSpacing) == 0
)
(
g ThisLampModel = Guide ;
}
else
r
L
if
I
{
(ThisLamp %

SirenSpacing) ==0
)

7
1
a ThisLampModel = Announcer ;

else
r

1
B ThisLampMode! = LightSolo ;
}

B

Figure 8: Graphical visualization of code coverage in a flow diagram in the LDRA tool suite

LDRA Ltd 11

Achieving the ISO/SAE 21434 software objectives

Traceability of tests to requirements is demonstrated using the TBmanager component of the LDRA tool

suite (Figure 9).

| Project Tree 8 X |Relationships
Project Tree A| (@ ltemtoMappings [(1) Two-Level Requirements to Procedures 3
> [3 HLR 0220, Failed Power Tunnel Lighting Output Calculation - Cody, Bil <|[5|[E|[sekect [[None. =] ¢ 1 FEIE
(<[] Seect?

>[5 HLR_0230, Failed Lamp Output Handling
> J& HLR 0231, Lamps maximum output
v

. (1 Note) - Cody, Bill

Project tree including

ion of lamp output fr...

HLR_0236, Large lamp use Cody
HLR_0360, Cell Configuration and output
0040, Photometer, (1 Note)

- Cody, Bill

ounds

> B lLR_M70 Adjust Emergency Lighting

system requirements
II

n photometer nominal range - Cody, Bill

2N

. (2 Notes) - Riley, Shawn

) - Black, Jason

will

(3 TCI_0310: The Tunnel softs

inputs ranging f..

v

8 x

<>/

Select |None v | (58)

Select None v | (41) Procedures

5 HLR_0010, Starting display software, (1 Note) - Cody, Bill
photometer nominal range

[HLR_0050, Input options days since cleaning nomi
[HLR_0070, Input options power failure

5 HLR_0090, Display total cell demand

5 HLR_0100, Display Lumens , (1 Note) - Cody, Bill

3 HLR_0110, Cleanliness Factor - Cody, Bill

& HLR 0115, Cleanliness efficiency factor g

& HLR 0120, Tunnel Lighting Output Demand Calculation...
& HLR 0125, Adjust Powered Lighting

J5 HLR_0130, Zone Lighting Formulae LON.

5 HLR 0140, Zone Lighting Output Demand Calculation...
& HLR 0150, Set Lighting Output Demand Calculation...

[HLR 0160, Lamp Selection , (1 Note) - Cody, Bill

5 HLR_0120, Tunnel Lighting Output Handling...

& HLR_0190, Lamp Output Handling L (1No...
& HLR_0200, Tunnel Lighting Configuration - Cody, Bil
& HLR_0210, Exit sign battery drain - Cody, Bill

5 HLR_0215, Luminary configuration - Cody, Bill
5 HLR_0220, Failed Power Tunnel Lighting Output Calcula...
5 HLR_0230, Failed Lamp Output Handling

| Items Assigned to User Bar Chart

E0B2 a’ax @

Assgned Items by User

sTotd #Requrements «Tasks W TCls

7n

Number of Assigned Items
8

Biengamn Cody, Bl Lawrence,Sarch e, Pex:«

8 x

Riey, Q\am wikon,

[HLR_0231, Lamps maximum output

[HLR_0233, Minimum lamp output threshold
J3 HLR 0234, Lamp extinguishing condition
L5 HLR 0235, Lamp on condition - Cody, Bill

- Cody, Bill
- Cody, Bill

- Cody, Bill

5 HLR_0360, Cell Configuration and output

T8 LLR0010, Instantiate Cell - Lee, Peter

5 LLR 0020, Initialise Cell . (1 Note) - Riley, Shawn
73 LLR_0030, Set Emergency output level

T3 LLR_0040, Set PoweredOutputLevel

T3 LLR_0050, Calculate cell output

T3 LLR_0060, Get Lamp Model Duo

T3 LLR_0070, Get Lamp Model Guide

3 LLR_0080, Get Lamp Model Announcer...

T3 LLR_0090, Get Lamp Model LightSolo

T3 LLR 0100, Get Data and Read Content

T3 LLR 0110, Get Data and Read Content

T3 LLR 0120, Initialise Lamp

T3 LLR_0130, Set Lumens Output - Riley, Shawn
T3 LLR 0140, Get MaximumLumens.

13 LLR 0150, Get Minimum Lumens

E LLR 0160, Send Power to I.amp

- Blac..
- Bla..

E LLR mo anp Dlmenmn; (3 Notes...
T3 LLR_0190, Lamp Dimensions , (3 Notes...
E LLK_I)ZOO Lamp Dlmenswns , (3 Notes)

E LR, ozzo, Limp Type Instantiation
73 LLR_0230, Lamp Type Initialisation
T3 LLR_0240, Lamp Type Get Maximum Lumens
T3 LLR 0250, Lamp Type Get Minimum Lumens
T3 LLR 0260, Lamp Type Get Power Required...
14 LLR_0270, Initialise lighting system

I; LLR 0220, Photometer |npu!|n(erh<e

AU
, (1 Note)

B LLR 0284, |npmopnonmn . (@ Nates)- Bllck,lason
3 LLR_0286, Input options days since cleaning nominal...

T3 LLR 0287, Input options days since cleaning out of b...
73 LR 0282, Input options power failure

73 LLR_0289, Input options power failure

T3 LLR_0290, Days since cleaning input interface...

E LLR_0310, Mnunlmg Area Insta

E LLR_0330, Sysum Dan Insnnmllon
T3 LLR_0340, System Data Initialisation s
3 LLR_0350, Calculate and get soiling factor

T3 LLR 0360, System Data Query Get Lamp Power Requi..
13 LLR 0370, System Data Query Get Lamp Maximum L...
73 LLR 0380, System Data Query Get Lamp Minimum L.
73 LLR 0390, System Data Query Get Lamp Emergency L...

~

© Bool TunnelData:Cell:InitialiseCell(const Sint_32 Luminai...
< Bool B
@ Float_64 TunnelData:Cell:CalculateCellOutput(Float_64 L...
© Float_64 TunnelData:Lamp:GetMaximumLumens();
& Float_64 TunnelData::Lamp:GetMinimumLumens();

© Float 64 umens(;
© Float 64 umens();
¢ Float 64 ampLu.
© Float 64

© Sint 32 leanin,
© Sint_32 TunnelData:SystemData:: GetExitSignSpacing(;

¢ Sint 32
© Sint_32 TunnelData::SystemData::GetSirenSpacing(;
© Sint_32 main(;

¢ TunnelData: CellQ;

© TunnelData:Lamp::Lamp();

©

¢ TunnelData:LampType:LampTypel;

¢ TunuelDita MountingArea: MountingArea(int , int b);

int b, intw, ...

¢ Tunneanl :SystemData::SystemData();
¢
©
 int TunnelData: :llmpAnnhutes

etl

 int TunnelData:LampAttributes:Heigl
© int TunnelData:LampAttributes: Width();
¢ int
& void TunnelData:C SdEm:rg:ncyOutmecde

< void lo...
¢ void TunnelData:: Dmln:.Ruanntem(Smuz array, ch...
© void TunnelDataiLampsInitialiseLamp(const LampTypel...
© void TunnelData::Lamp::SendPowerToLamp(const Sint 3...
¢ void TunnelData:Lamp:SetLumensOutput(Float. 64 Lum.
< void .
© void =(const

© void TunnelData: SystemData:nitialiseParams(Sint 32" p...
© void

amps(Tt

P!

» B
High level B Low level Source code
requirements By requirements

= =
=) ttk_wo Adjust Powered Lighting =
[LLR_0470, Adjust Emergency Lighting Source Fie x
[LLR_0420, Zone default intensity L @N.

_ ‘lrﬂ 110 000 toisias o Py ¥ |_S.21D0178\Source_Code\Main.cop

D] =] = =
@ Mpsouce | LRequrementGrid | & Unview D MatixView @o Relationships

Figure 9: Automated bidirectional requirements traceability helps to ease requirements-based testing

Interface test

Interface testing is used to verify whether the communication between software systems, subsystems and
components works correctly. The TBrun [24] component of the LDRA tool suite provides a platform to demonstrate
the correct functionality of those interfaces, potentially in combination with code coverage analysis. Although
often described as a unit test tool, TBrun uses the same interface to perform integration testing. This allows for a

progressive “bottom up”

“top down” approach to testing interfaces between units.

Software interface is exposed at 9

J

J

Variable 1/0 View
Value Name Type function scope, allowing user to
Double-click -
£ B - e oo enter test case inputs and
I Smalle1 —
- . oo —\ expected outputs...
I 1000 mManmumEntOutpm Sint_32
I 1000 Cotoldois Sint 23 - ~
I 1000 Sequence Tree View ..the tool suite adds
O fals
500 e Valve those test cases to a
0 00 v © Analog Test oo
> @1 quence...
o <
> @3
vi@a
M Double-click to access Managed Stubs
I PercentageDemand 1000 Test Case RegressionP /F Procedure
I mlL Small+1
1 mMaimumEntryOutput 100.0 1< B PASS TunnelData:Zo
§ "‘:‘:"""""‘f”‘,‘:,‘!"“‘ :g-g 1c FAIL exception TunnelData::Zo)|
mMinimumEntryOutput . -
1 mMinimumExitOutput 100.0 i 3 PASS TunnelData:Zof
0% false 1< FAIL TunnelData:Zo)
g mFormulaConstant 0.0 s PASS TunnelData:Zo)
mFormulaGradient 00 o
> @s VoDl 1 13 FAIL TunnelData:Zo|
> @6 TunnelData:Zone-As|| I3 7 PASS TunnelData:Zo/
> 7 TunnelData:Zone=As|| [& FAIL TunnelData:Zo|
= e) FAIL TunnelData:Zo|
1< B T) PASS TunnelData:Zo|
..and creates a test harness, SAIL TunnelData:Zo|
which is compiled and executed E 2 PASS e
on target hardware @ e B TunnelDatazZo)
i35 FAIL exception TunnelData:Zo|
1 B0 PASS TunnelData::Zo)
-

Figure 10: Unit and integration test with the TBrun component of the LDRA tool suite

LDRA Ltd

Achieving the ISO/SAE 21434 software objectives

LDRA

The TBextreme [25] optional module helps by automating some of the test inputs — for example, to ensure
that boundary conditions are handled correctly (Figure 11).

¢ | Test Case View BX vy ¢ pp_tunnel_demo_Mingw.exe
~ i
G, |TestCase RegressionP/F Procedure M D ————
35 PASS TunnelData::SystemData:Getl > & Enums
36 PASS TunnelData::SystemData:Getl % TunnelData:Zone Run Standard Extreme Test for Namespace
& 37 PASS TunnelData:SystemData:GetlL 3% TunnelData:Cell Run Linear Extreme Test for Namespace
gg g:z: ¥unne|Data:SystemDatazGetE % TunnelData:SystemD Run Tabular Extreme Test for Namespace
unnelData:SystemData:SetD & TunnelDatazLampTyg
40 PASS TunnelData:SystemData:GetC 4 TunnelDatazLamp £ Highlight
0 41 PASS TunnelData::SystemData:GetE v &
42 PASS TunnelData::SystemData:GetS N Value Options
I 43 PASS TunnelData:MountingArea:Nt . A
44 PASS TunnelData:SystemData: = ’ Eﬁ
o 45 PASS TunnelData:LampTypeInitiali % Applying of Stub Return Values.
46 PASS TunnelData:LampType:GetMz r Apply Extreme Test to Stub Return Values
47 PASS TunneIData::LampType::G etMi Class COm[Apply Multiple Return Values to Stubs Generate Multiple Values for Stub Return Values Using Only Condi v
48 PASS TunnelData:LampType:GetPo ¢ Cell=C
49 PASS TunnelData:LampAttributes:H ¢ CellzIn
50 PASS TunnelData:LampAttributes:\ ¢ Cell:S Capturing Managed Stub Properties.
51 PASS TunnelData:LampAttributes:C. ¢ Cellzg{ Capture Test Case Hit Counts in Managed Stubs
52 PASS TunnelData:LampAttributes:A ¢ CellC Capture Parameter Values in Managed Stubs O
i 53 PASS TunnelData::SystemData: = 3 Capture Parameter Sub-Elements in Managed Stubs
54 PASS TunneIData::LZmp::InitialiseLal ¢ CeliG| ’
55 PASS TunnelData:Lamp:SetLumens! ¢ Systen Applyig of Min bid Max Valses:
56 PASS TunnelData:Lamp:GetMaximt ¢ Systen
57 PASS TunnelData:Lamp:GetMinimu © Systenf Apply Min Mid Max Values g
| li@ss PASS TunnelData:Lamp:SendPower. & Systen|IRREEMTMARSE e Bl cons

Prevent Min Mid Max Values Being Used in Casts From Integrals
Prevent Min Mid Max Values Being Applied to Unused Variables

Applying of Values to Conditions.

ConditionLevel Optimise Values Applied to Conditions -

Applying of Values to Switch Statements.

SwitchLevel Generate Single Value for Default Case in all Switch Statements v

Only create one test case when the function has a cyclomatic complexity of 1.

Optimise for Complexity O
v

Figure 11: Automating test vector creation with the LDRA tool suite

Resource usage evaluation

Ensuring the provision of adequate resources (memory, timing, file system ...) and the elimination of
contention issues are important considerations for a connected system, particularly when under attack
from bad actors. The advent of multicore processors has seen heightened importance of ensuring
adequate resources and particularly in the protection of domains from each other, but it has always made
ensuring those resources are available more challenging than ever.

For example, consider the challenge represented by the calculation of Worst-Case Execution Time (WCET).
According to Reinhard Wilhelm et al, the calculation of a definitive value of WCET by mathematical analysis
is not soluble in the general case. A purely static analysis approach will therefore require approximations
to be applied which have to be correct, but not necessarily complete [26].

The result is that such tools will necessarily err “on the safe side” which is better than nothing, but in

an environment where precision is everything, it cannot be ideal. However, there are long standing and
proven mechanisms available to measure the properties of software code which are independent of their
execution on the chosen platform. For example, Halstead’s metrics [27] reflect the implementation or
expression of algorithms in different languages to evaluate the software module size, software complexity,
and the data flow information — and these can be calculated precisely from the static analysis of the
source code (Figure 12). Such an approach can identify which sections of code are the most demanding of
processing time but cannot provide absolute values for maximum time elapsed.

Halsteads (Cashregister.c)

Unique Unique

File Total Operators Total Operands O e

Vocabulary Length Volume

Total for Cashregister.c 149 230 16 56 72 379 2338

Figure 12: Halstead’s Metrics calculated using the LDRA tool suite

LDRA Ltd Achieving the ISO/SAE 21434 software objectives

LDRA

The same static analysis also yields call diagrams associated with the code base, presenting a means of
visualizing where the most demanding functions revealed by this analysis are exercised in the context of
the complete code base (Figure 13).

TunnelDataCell:Initialise Cell

Procedure: TunnelData::Celk:IntialseCel
Source Line 32 (Ref. Line 268)

Procedure: TumnelData::Cel::SetPoweredOutputLevel
Source Line 105 (Ref. Line 412)

Statement 100/100
Branch/Decsion 100/100

{3 Code Coverage : Cpp_tunnel _ighting_system : Dynamic Configuration - IS0 26262 ASIL D [

Percentage Percentage Change Success Limit

v 3 Cellepp
v [= Combined Coverage Run Failed
= Statement Coverage 9 ~93 100
= Branch/Decision Coverage % +%0 100

TunnelDatazCell:GetL = Modified Condition / Decision Coverage £ -83 100

) (Code G Cellcpp)
cedure: TuneDatar:Cell > 9 = (Code Cell.cpp)
Soirca Lo 120 (Raf Uk & ¥ & TunnelData:Cell:Cel

Satement 84/100 v = Combined Coverage Run Passed
BrDeon e = Statement Coverage 100 +100 100
4 s = Branch/Decision Coverage 100 +100 100

TunnelData:Cell:CalculateCellOutput

Procedure: TunnelData::Cel::CalaulateCelOutput
Source Line 171 (Ref. Line 529)

Statement 100/100

¥ & TunnelData:Cell:InitaliseCell
v = Combined Coverage Run Passed

x 100 + 100 100
B 1DRA tool suite Call Coverage Overview Report 100 +100 100
R system Set: Gop_tunneLtighting.system
Passed
100 100 100
Dateof Analys LoRAVe L 0 100
Fidan 17 2020 154022 f Jage 100 +100 100
Failed
97 v 100
£ ~88 100
g 100 +100 100
80% 17
Call Coverage Calls Not Covered T;Csud - -

Files Failed
= +8 100

Show [All_v | entries. Search: G 6 o,
0 s 100
o Gl ot
Name SO TowiCols CollCaverage () P — Epy—— ”

Lonpcrp o
o o
o o o -
6 s s o
o . . o
7 0 T
6 0 6
s 0 s L]

Figure 13: Call diagrams in the LDRA tool suite provide a means to visualize where the most demanding
functions are called

The TBrun component of the LDRA tool suite includes facilities to measure these critical execution times
dynamically rather than relying on approximations based on static analysis.

© tmng
Sequence File Explorer

v =l Ggrocers.c - C:\LDRA_Workarea\Examples\C_tbrun_examples\
2 Global Variables
%5 Global Typedefs
5 Global Macros
% Global Enums
3 Global Structures

© tming
© initialise_customer
o ach._i i Seq File Explorer
Calls View v ol Ggrocers.c - C:\LDRA_Work E ples\C_tbrun_ P
[Procedure Calls Number of Calls "s g:":’: :’"’b:S
& buy_fruit 4 I, ot Fypecats
= Global Macros
o buy fruit_ex 1
¥ X8 Global Enums
w buy_healthiest 1
/ *3 Global Structures
& calculate_cheapest_.. 1 ot
4 AT ¥ initialise_customer
- Chlnge_‘ml‘]’l(e 1 i K _cuctomer cach iniaction.
g char_to_fruit 1
m Calls View
4 convert_pence 1
l < & Procedure Calls Number of Calls Call Type () Parameters
Variable 1/0 View - buy_fruit 4 Internal (fruit)
w buy_fruit_ex 1 Internal (char)
Value Name % buy_healthiest 1 Internal (const int,const int)
I apple f: - late_cheapest_.. 1 Internal 0
I 00 cash & change fruit_price 1 Internal (fruit,double)
@ 0.001 Execution Tj char_to_fruit 1 Internal (char,fruit *)
O 0.000000e+000 customer.cal & convert_pence 1 Internal (int)
O pear ¢ <
& 2pple customer.fa| yariable 1/0 View
Value Name Type
1 apple favourite fruit
i SRR, cash double
KD 213 | Execution Time int
O 0.000000e+000 customer.cash double
O pesr customer.cheapest fruit
P7 apple customer.favourite fruit

Figure 14: Timing analysis using the TBrun component of the LDRA tool suite

LDRA Ltd Achieving the ISO/SAE 21434 software objectives

LDRA

Verification of the control flow and data flow

Flawed data or control flow can lead to vulnerabilities in code. Control and data flow analysis provides
a means to confirm that both are in accordance with the system design. The LDRA tool suite provides a
graphical static and dynamic analysis facilities for both host and embedded software analysis. Control
flow is exposed and illustrated in the form of flow diagrams. These can be superimposed with execution
paths as shown in Figure 8 earlier.

The Dynamic Data Flow Coverage (DDFC) module [28] supplements that functionality by analysing and
reporting on the variables used during run-time.

Dynamic analysis

Dynamic analysis is a generic term for software test methods that allow for the validation and
verification of software in whole or part by analysing its behaviour at run time, many of which are
described in the previous sections. LDRA tool suite components concerned with code (structural)
coverage analysis and unit test (TBrun) are examples of dynamic analysis tools.

Dynamic analysis (or DAST) in the context of code during development and integration usually implies
“white box” analysis, such that the source code is available and mapped to the execution of the object
code.

More traditional “black box” security techniques such as fuzz testing and penetration testing still have a
place in the ISO/SAE 21434 development lifecycle, but these are best used after the system is complete
to confirm the success of the precautions taken during development.

Static analysis

Static analysis is a generic term for software test methods that allow for the validation and verification
of software by analysing the source code. The LDRA tool suite provides the ability to generate quality

metrics (including those relating to code complexity) and to check adherence to the coding standards

specified in accordance with ISO/SAE 21434 §10.4.1 (above).

Results View 8 x
4 Code Revie : Cop_tumnel_ighting_system : C++ - MISRA-C++:2008 Model]
Number Violated Level of Violation Standard Code Al
v [& Cpp_tunnel_lighting system |
v Cellepp
|_— [+ _Included file not protected with Zdefine. 6 Required MISRA-C++:2008 16-2-3

& Finclude preceded by non preproc directives Required MISRA-C+ +:2008 16-0-1
~ & HeaderFiles

+% Included file not protected with #define. MISRA-C++:2008 16-2-3

> % DU anomaly, variable value is not used. 2 Reguired MISRA-C +:2008 0-1-6,0-1-9
+% Local variable should be declared const. 2 Required MISRA-C++:2008 7-1-1
@ Array has decayed to pointer.: pLampTypelDs Required MISRA-C+ +:2008 5-2-12
No brackets to loop body. Required MISRA-C+ +:2008 6-3-1
- Advisory MISRA-C++:2008 5-0-2
utputLevel
s not used. 2 Reguired MISRA-C+ +:2008 0-1-6,0-1-9
aport L ¢ % g i~ feclared const.: TunnelData:Cell:... Required MISRA-C++:2008 9-3-3
0 sErmLstchA fc:f:l ‘S:IFe,'YE”,SRA C++:2008 Compliance Overview Report Jared const,: ThisType Required MISRA-Cs +:2008 7-1-1
e Aot st e e ol rackets. Required MISRA-C+ +:2008 5-0-2,5-2-1
Advisory MISRA-C++:2008 5-0-2
) putlevel
Sk s ot A s not used. 3 Required MISRA-C:+:2008 0-1-6,0-1-9
lectared const. : TunnelData:Celk:... Required MISRA-C++:2008 9-3-3
lared const.: ThisType Required MISRA-C+ +:2008 7-1-1
jresentation value. Required MISRA-C+ +:2008 4-5-2
ic. : Gt and double): Unassigne... Required MISRA-C+ +:2008 5-0-4
71% 62 698 and double): mLampTypeMaxLu... Required MISRA-C +:2008 5-0-7
5 = Reguired MISRA-C +:2008 5-2-4
MISRA-Ce-@OOS Compliance Guideline otal Violations Advisory MISRA-C+ +:2008 5-0-2
Pk sint Advisory MISRA-C+ +:2008 3-9-2
or not checked before use. : this.... Document MISRA-C++:2008 0-3-1
Ltput
feclared const.: TunnelData:Celk:... Required MISRA-Co :2008 8-3-3
MISRA-C +:2008 Guidelines d const. : CellSpacing Required MISRA-C+ +:2008 7-1-1
Shon[A_x] encies Searh lared const. 2 Required MISRA-C+ +:2008 7-1-1
el saa ey 4 Required MISRA-C+ +:2008 6-4-1 v
14 NetComplant ez
NetCompiant Resures
) Compiant Recuies

Static analysis tools vary in terms of their ability to identify the more subtle nuances of standard
violations, but the more sophisticated implementations can seem slower because of the additional
processing required to achieve that. A sensible approach is to choose tools with the option to run in
“lightweight” mode initially, and to apply more complete analysis as development progresses.

LDRA Ltd 15 Achieving the ISO/SAE 21434 software objectives

LDRA

Conclusions

Automotive embedded applications have traditionally been isolated, static, fixed-function, device-
specific implementations, and practices and processes have relied on that status. But the explosion in
demand for connectivity in the industry was such that even the publication of the stopgap SAE J3061™ in
January 2016 was very welcome.

This allowed time for the development of a more formal standard to address the issue more
satisfactorily, and ISO/SAE 21434:2021 was published to replace SAE J3061 in August 2021.

ISO/SAE 21434 can be considered complementary to ISO 26262 in that it provides guidance on best
development practices from a cybersecurity perspective, just as ISO 26262 provides guidance on
practices to address functional safety.

The failure of ISO/SAE 21434 to give detailed guidance on how to achieve its objectives means that from
a software perspective, the standard does little more than ratify the document it replaces. However,
ISO/SAE 21434 presents a worthy set of goals for software developers to achieve. From an optimistic
perspective, the lack of detail affords flexibility on how they are achieved. In particular, the analogous
nature of severity categories in ISO/SAE 21434 with ASIL values in ISO 26262 suggests a similar
approach to varying the level of verification and validation activity in a similar way.

When applied appropriately, established and proven tools such as the LDRA tool suite have a key role to
play in supporting the principles outlined in ISO/SAE 21434. They provide a means to define and apply a
pragmatic approach to achieving them, despite the failure of the standard to provide that guidance.

LDRA Ltd 16 Achieving the ISO/SAE 21434 software objectives

LDRA

Works Cited

[1]
(2]

(3]

(4]

(5]

6]

(7]

(8]

[9]

[10]

[11]
[12]
[13]

[14]

[16]
[17]
[18]

[19]

[20]

LDRA Ltd

International Organization for Standardization, ISO 26262:2018 “Road vehicles - Functional
safety”, International Organization for Standardization, 2018.

SAE International, in J3061 “SURFACE VEHICLE RECOMMENDED PRACTICE - Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems”, SAE International, 2016.

International Organization for Standardization / SAE International, ISO/SAE 21434:2021 “Road
vehicles — Cybersecurity engineering”, International Organization for Standardization / SAE
International, 2021.

The UNECE World Forum for Harmonization of Vehicle Regulations, “WP.29 - Introduction,” United
Nations Economic Commission for Europe (UNECE), [Online]. Available: https://unece.org/wp29-
introduction. [Accessed 23 March 2022].

United Nations, UN Regulation No. 155 - Uniform provisions concerning the approval of vehicles
with regards to cyber security and cyber security management system, Geneva: United Nations,
2021.

International Organization for Standardization, 1ISO 26262-6:2018 “Road vehicles - Functional
Safety - Product development at the software level”, International Organization for
Standardization, 2018.

LDRA, “LDRA tool suite,” LDRA, [Online]. Available: https://ldra.com/products/ldra-tool-suite/.
[Accessed 23 March 2022].

R. Seacord, “Top 10 Secure Coding Practices,” Carnegie Mellon University Software Engineering
Institute, 2 May 2018. [Online]. Available: https://wiki.sei.cmu.edu/confluence/display/seccode/
Top+10+Secure+Coding+Practices. [Accessed 23 March 2022].

Microsoft, “The STRIDE Threat Model,” Microsoft, 15 December 2021. [Online]. Available: https://
docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-
drivers#the-stride-approach-to-threat-categorization. [Accessed 23 March 2022].

Microsoft, “The DREAD approach to threat assessment,” 5 December 2021. [Online]. Available:
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-
drivers#the-dread-approach-to-threat-assessment. [Accessed 23 March 2022].

Forum of Incident Response and Security Teams, Inc, “Common Vulnerability Scoring System,”
2015-2021. [Online]. Available: https://www.first.org/cvss/. [Accessed 23 March 2022].

The Mitre Corporation , “Common Weakness Scoring System (CWSS),” 5 September 2014. [Online].
Available: https://cwe.mitre.org/cwss/cwss_vi.0.1.html. [Accessed 23 March 2022].

The Mitre Organization, “CVE Program Mission,” 1999-2021. [Online]. Available: https://www.cve.
org/.[Accessed 23 March 2022].

Homeland Security Systems Engineering and Development Institute, “CWE Common Weakness
Enumeration,” The MITRE corporation, August 2021. [Online]. Available: https://cwe.mitre.org/

cwss/cwss_vi.o0.1.html[15] The Mitre Organization, “Common Attack Pattern Enumerations and
Classifications (CAPEC),” The Mitre Organization, 2 March 2022.[Online]. Available: https://capec.
mitre.org/ . [Accessed 23 March 2022].

AUTOSAR, “AUTOSAR (AUTomotive Open System ARchitecture),” AUTOSAR, 2022. [Online].
Available: https://www.autosar.org/. [Accessed 23 March 2022].

S. Neemeh, “What is ASPICE in Automotive?,” LHP, 9 June 2020. [Online]. Available: https://www.
lhpes.com/blog/what-is-aspice-in-automotive. [Accessed 13 July 2021].

M. Pitchford, “AUTOSAR, I1SO 26262, SAE |]3061: So many rules, so little time!,” in Embedded
World, Nuremberg, 2020.

MISRA, “MISRA C:2012 Third Edition, First Revision,” The MISRA Consortium Limited, February
2019. [Online]. Available: https://www.misra.org.uk/product/misra-c2012-third-edition-first-
revision/. [Accessed 24 September 2021].

Carnegie Mellon University Software Engineering Institute, “SE/ CERT C Coding Standard,”
Carnegie Mellon University Software Engineering Institute, 5 December 2018. [Online]. Available:

17 Achieving the ISO/SAE 21434 software objectives

https://unece.org/wp29-introduction
https://unece.org/wp29-introduction
https://ldra.com/products/ldra-tool-suite/
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-stride-approach-to-threat-categorization
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-stride-approach-to-threat-categorization
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-stride-approach-to-threat-categorization
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://docs.microsoft.com/en-us/windows-hardware/drivers/driversecurity/threat-modeling-for-drivers#the-dread-approach-to-threat-assessment
https://www.first.org/cvss/
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
https://www.cve.org/
https://www.cve.org/
https://capec.mitre.org/
https://capec.mitre.org/
https://www.autosar.org/
https://www.lhpes.com/blog/what-is-aspice-in-automotive
https://www.lhpes.com/blog/what-is-aspice-in-automotive
https://www.misra.org.uk/product/misra-c2012-third-edition-first-revision/
https://www.misra.org.uk/product/misra-c2012-third-edition-first-revision/

LDRA

[21] LDRA, “LDRA Testbed® and TBvision®,” LDRA, [Online]. Available: https://ldra.com/products/ldra-
testbed-tbvision/. [Accessed 23 March 2022].

[22] LDRA, “TBexclude®,” LDRA, [Online]. Available: https://ldra.com/products/tbexclude/. [Accessed
23 March 2022].

[23] LDRA, “Code Coverage analysis,” LDRA, [Online]. Available: https://ldra.com/capabilities/code-
coverage-analysis/. [Accessed 23 March 2022].

[24] LDRA, “TBrun®,” LDRA, [Online]. Available: https://ldra.com/products/tbrun/. [Accessed 23 March
2022].

[25] LDRA, “TBextreme®,” [Online]. Available: https://ldra.com/products/tbextreme/. [Accessed 23
March 2022].

[26] R.W.e.al., “The Worst-Case Execution-Time Problem—Overview of Methods and Survey of Tools,
April 2008. [Online]. Available: http://www.es.mdh.se/pdf publications/1258.pdf. [Accessed 1
November 2021].

[27] Halstead, Maurice H., Elements of Software Science., Amsterdam: Elsevier North-Holland, 1977.

[28] LDRA, “Dynamic Data Flow Coverage (DDFC),” LDRA, [Online]. Available: https://ldra.com/
products/dynamic-data-flow-coverage-ddfc/. [Accessed 23 March 2022].

”»

LDRA Technology Inc.
2540 King Arthur Blvd, 3rd Floor, 12th Main, Lewisville, Texas 75056
Tel: +1 (855) 855 5372

ANE SGS i
bsi. . - Elél:RKJ\FOTNALE SICHERHEIT LDISA U(:(&M VV:JI':dWIdE LDRA Technology Pvt. Ltd.
Qualty FONGHONAL BARERY ortside, Monks Ferry, Unit B-3, Third floor Tower B, Golden Enclave
Management SAAR APPROVED Wirral, CH41 5LH HAL Airport Road Bengaluru 560017
Tel: +44 (0)151 649 9300 Tel: +91 80 4080 8707

2z /L0 0°2A SaAI123[q0 a1eMY0S YEYTZ JyS/ 0S| Y} SuIAsIYdY

e-mail: india@ldra.com

LDRA Ltd 18 Achieving the ISO/SAE 21434 software objectives

https://ldra.com/products/ldra-testbed-tbvision/
https://ldra.com/products/ldra-testbed-tbvision/
https://ldra.com/products/tbexclude/
https://ldra.com/capabilities/code-coverage-analysis/
https://ldra.com/capabilities/code-coverage-analysis/
https://ldra.com/products/tbrun/
https://ldra.com/products/tbextreme/
http://www.es.mdh.se/pdf_publications/1258.pdf
https://ldra.com/products/dynamic-data-flow-coverage-ddfc/
https://ldra.com/products/dynamic-data-flow-coverage-ddfc/

